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Abstract—A 1-D variational system has been developed to pro-
cess spaceborne measurements. It is an iterative physical inver-
sion system that finds a consistent geophysical solution to fit all
radiometric measurements simultaneously. One of the particular-
ities of the system is its applicability in cloudy and precipitating
conditions. Although valid, in principle, for all sensors for which
the radiative transfer model applies, it has only been tested for
passive microwave sensors to date. The Microwave Integrated
Retrieval System (MiRS) inverts the radiative transfer equation
by finding radiometrically appropriate profiles of temperature,
moisture, liquid cloud, and hydrometeors, as well as the surface
emissivity spectrum and skin temperature. The inclusion of the
emissivity spectrum in the state vector makes the system applica-
ble globally, with the only differences between land, ocean, sea ice,
and snow backgrounds residing in the covariance matrix chosen to
spectrally constrain the emissivity. Similarly, the inclusion of the
cloud and hydrometeor parameters within the inverted state vec-
tor makes the assimilation/inversion of cloudy and rainy radiances
possible, and therefore, it provides an all-weather capability to the
system. Furthermore, MiRS is highly flexible, and it could be used
as a retrieval tool (independent of numerical weather prediction)
or as an assimilation system when combined with a forecast field
used as a first guess and/or background. In the MiRS, the funda-
mental products are inverted first and then are interpreted into
secondary or derived products such as sea ice concentration, snow
water equivalent (based on the retrieved emissivity) rainfall rate,
total precipitable water, integrated cloud liquid amount, and ice
water path (based on the retrieved atmospheric and hydrometeor
products). The MiRS system was implemented operationally at the
U.S. National Oceanic and Atmospheric Administration (NOAA)
in 2007 for the NOAA-18 satellite. Since then, it has been extended
to run for NOAA-19, Metop-A, and DMSP-F16 and F18 SSMI/S.
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This paper gives an overview of the system and presents brief
results of the assessment effort for all fundamental and derived
products.

Index Terms—Atmospheric sounding, cloudy and rainy data
assimilation, microwave retrieval, surface sensing.

I. INTRODUCTION

THE NUMERICAL weather prediction (NWP) radiance
assimilation and the physical retrieval process based on

the variational approach are mathematically similar concepts
sharing a number of common characteristics: 1) a similar
cost function to be minimized; 2) the need to have accurate
and representative covariance matrices and mean backgrounds;
3) the reliance on an accurate forward operator to simulate
measurements; and 4) the similar issues of convergence, noise
estimation, and radiometric bias removal. The Microwave Inte-
grated Retrieval System (MiRS) presented in this paper could
be used in both modes, and it relies on the Community Ra-
diative Transfer Model (CRTM) to provide both the simulated
radiances and the Jacobians with respect to all geophysical
parameters to be inverted, including hydrometeors. The state
vector is constrained by a set of covariance matrices generated
offline to reduce the null-space and to ensure a physically
consistent final solution. The computation of the derivatives
(k-matrix) in CRTM is performed using tangent linear (TL)
and adjoint (AD) approaches. When used in absorption-only
mode, it is found that convergence of the system is reached
globally, even in coastal areas, with pockets of nonconvergence
highly correlated to cases of precipitation, presence of ice, and,
generally, any situation that the forward operator cannot handle
properly. These nonconvergence areas are reduced drastically
when the retrieval of hydrometeor products is included, and
the multiple scattering option is turned on in the forward
model. The system convergence is modulated by computed
instrument errors and by estimated modeling errors. The system
is applied operationally to NOAA-18, NOAA-19, and Metop-A
Advanced Microwave Sounding Unit (AMSU) and Micro-
wave Humidity Sensor (MHS) sensors, as well as to DMSP-F16
(and soon F18) SSMI/S. It is also being applied rou-
tinely to Advanced Microwave Scanning Radiometer for
Earth Observing System (EOS) (AMSR-E) and to National
Polar-orbiting Operational Environmental Satellite System
(NPOESS) Preparatory Project/Advanced Technology Micro-
wave Sounder (NPP/ATMS) proxy data in preparation for the
NPP launch that is scheduled in October 2011. The assumed
modeling errors are around 1 K in all situations, except for
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the temperature-sounding channels, where they are estimated
to be lower (between 0.17 K and 0.45 K depending on the
channel). A suite of products, including atmospheric, surface,
and hydrometeor parameters, is available on an operational
basis from the MiRS algorithm, and it will be presented in this
paper. In addition, the software package is also made available
to the scientific community, and it could be obtained upon
signing a free-of-charge licensing agreement. The system could
also be an excellent tool to preprocess and filter microwave data
for NWP assimilation applications based on the convergence
metric and other parameters. The strictness of the filtering could
easily be adjusted to fit users’ needs. An additional benefit
would be to provide an estimate of the geophysical state before
starting the assimilation. This might be useful especially if there
is an interest in assimilating measurements made in cloudy
and rainy conditions and/or if there is interest in extending
the assimilation over nonstandard surface backgrounds, such as
coastal areas, sea ice edges, etc. Section II describes the MiRS
scientific basis in detail. Section III gives an overview of the
technical implementation of MiRS. It shows that MiRS is a full
end-to-end processing system performing all the preprocessing
and postprocessing functions, including footprint matching,
bias correction, and interpretation of the primary products into
derived products. Section IV presents the assessment of the
quality of the MiRS products. This is an assessment done
on a daily basis to make sure that there are no anomalies or
significant drifts. It is performed using global NWP analyses
and other sensor data products. It is different from the valida-
tion performed using a more highly valued ground reference
data such as radiosondes, radar, and rain gauges. Note that
the assessment presented here is a high-level overview of the
performances in order to accompany the overall description
of the MiRS system. In-depth analysis of the performances of
specific parameters has been, or will be for some others, the
object of dedicated studies published separately [4], [13], [16].
This paper concludes in Section V.

II. MIRS SCIENTIFIC BASIS

A. Overview of the Inversion Approach

MiRS is a 1-D variational (1DVAR) inversion scheme [2] that
employs the CRTM [26] as the forward and AD operators. It
solves for the surface and the atmospheric parameters simul-
taneously, including hydrometeors. The surface is represented
by its temperature and emissivity spectrum. The atmosphere
is represented by the temperature, moisture, nonprecipitating
cloud, and rain profiles (in both liquid and frozen phases).
Besides these primary parameters, other products are derived
either by performing simple vertical integration [the case of the
total precipitable water (TPW), cloud liquid water (CLW), ice
water path (IWP), and rain water path (RWP)] or by performing
a more elaborate postprocessing described later in Section III-F.
This is the case of the surface rainfall rate (RR) based on
the hydrometeor parameters, for example, or the snow and ice
properties based on the emissivity vector.

B. MiRS Mathematical Basis

The iterative process of the 1DVAR inversion scheme em-
ployed in this paper aims at minimizing the following cost

function, similar to the variational radiance data assimilation
employed in NWP models:

J(X) =

[
1

2
(X −X0)

T ×B−1 × (X −X0)

]

+

[
1

2
(Y m − Y (X))T × E−1 × (Y m − Y (X))

]

where X0 and B are the mean vector (background) and error
covariance matrix of X , which is the state vector to be retrieved,
respectively. E is the measurement and/or modeling error co-
variance matrix. The first term on the right Jb represents the
penalty in departing from the background value (a priori infor-
mation), and the second right term Jr represents the penalty
in departing from the measurements Y m. Solving for this
equation assumes that we have a forward operator Y that can
simulate radiances similar to the measurements without bias
and with statistics well captured within E. The solution that
minimizes this two-term cost function is sometimes referred
to as a constrained solution. The minimization of this cost
function is also the basis for the variational analysis retrieval.
The solution that minimizes this cost function is easily found
by solving for

∂J(X)

∂X
= 0

and by assuming a local linearity around X , which is generally
a valid assumption if there is no discontinuity in the forward
operator. This results in the following background-departure-
based solution:

ΔXn+1 =
{
BKT

n

(
KnBKT

n + E
)−1

}

× [(Y m − Y (Xn)) +KnΔXn]

where n is the iteration index. K, in this case, is the Jacobian
or the derivative of Y with respect to X .

At each iteration n, we compute the new optimal departure
from the background, given the derivatives as well as the
covariance matrices. This is an iterative numerical solution that
accommodates moderately nonlinear problems and/or parame-
ters with moderately non-Gaussian distributions. This approach
to the solution is generally labeled under the general term
of physical retrieval and is also employed in NWP assimila-
tion schemes coupled with horizontal and temporal constraints
(3DVAR and 4DVAR, respectively). As mentioned earlier, the
entire geophysical vector is retrieved as one entity, including the
temperature, moisture, and atmospheric hydrometeor profiles,
as well as the skin surface temperature and emissivity vector,
ensuring a consistent solution that fits the radiances. To address
the ill-posed nature of the problem, the retrieval is performed
in a reduced space. Empirical orthogonal functions (EOFs) are
computed for the geophysical background covariance matrix B
to diagonalize it. B is composed of atmospheric, hydrometeor,
and surface components to account for (and benefit from)
natural correlations that exist between these parameters. More
details about the construction of this covariance will be given
in Section III-D. The transformation matrix (eigenvectors) is
then used to project back and forth between the original and
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reduced spaces. It is important to note that the geophysical
parameters of water vapor, cloud, rain, and ice are transformed
into the logarithmic space before the retrieval. This is done
for the twofold purpose of avoiding the negative values and
making their distributions more Gaussian, which is a necessary
condition for an optimal variational inversion.

C. First Guess

The first guess, distinct from the mean background in the
MiRS algorithm, is used to start the iterative process. If the
cost function has only one minimum, then the first guess would
have, in theory, no impact on the result of the retrieval. How-
ever, it could help to speed up the convergence process if it is
able to set the first estimate closer to the solution than the back-
ground itself. This is distinct from the mean background, which
is a term in the formulation of the cost function, and therefore,
it has a direct impact on the solution, which is the vector that
minimizes the cost function. The background is derived from
climatological data sets as described in the next section. The
MiRS first guess is a multilinear regression algorithm, devel-
oped by collocating satellite measurements with NWP analyses
and by establishing a relationship between the geophysical
parameter that we want to regress and the sensor’s brightness
temperatures. Note that this relationship is done offline, and
the resulting coefficients, distinct for each surface type and
sensor, are used on the brightness temperatures obtained daily
to generate first guess estimates for each individual observation.
It is therefore important to highlight that there is no use of NWP
forecast or analysis fields (even surface pressure) in the MiRS
retrieval, either as the first guess or as the background.

D. Geophysical Background Covariance Matrix and
Surface Classification

The geophysical background covariance matrix is used to
constrain the state vector of the variational retrieval to within
physically realistic solutions while maintaining consistency
among the parameters and fitting the radiances. The covariances
for all state vector parameters are generated using the European
Centre for Medium-Range Weather Forecasts (ECMWF) 60
layer sample data set [5], ECMWF analyses [12], and model
output fields from the Penn State/NCAR Mesoscale Model 5
[6], [10]. The geophysical background covariances represent
the natural climate variability and cross-correlations for all pa-
rameters of the state vector and not the error of the background
as is typical within NWP data assimilation systems.

The geophysical background covariance matrix in MiRS has
three components. One covariance matrix is dedicated to at-
mospheric temperature and humidity. This matrix also contains
the correlation with skin temperature to account for the natural
linkage between lower-atmospheric and surface temperatures.
The second covariance matrix is associated with cloud, ice,
and rain hydrometeors. Note that this covariance is cross-
correlated to the previous clear sky covariance to account for
the natural linkages between the temperature and moisture and
the presence of rain and/or ice in the atmosphere. An illustration
of this composed atmospheric covariance matrix is shown in

Fig. 1. Illustration of the covariance matrix used in MiRS for all pa-
rameters, including temperature sounding indexes [1–100], moisture sound-
ing [101–200], nonprecipitation cloud profile [201–300], liquid rain profile
[301–400], ice profile [401–500], skin temperature, and surface pressure (note
that the covariances are, for illustrative purposes, shown as negative and positive
correlations, which are a more meaningful way to look at covariances).

Fig. 1, with covariances represented as correlations since they
allow a more straightforward interpretation. The exact formula
used to compute these covariances is given in the following:

σ2
ij =

1

N

N∑
i=1

N∑
j=1

(xi − xi)× (xj − xj)

where σij is one of the elements of the matrix corresponding
to row i and column j. N is the number of profiles used
to compute the statistics, and x is the average value along
the row or along the column. The correlations shown in the
figure represent covariances normalized by the product of the
corresponding variances.

The third covariance matrix is dedicated to surface emissiv-
ity. It contains several means and covariances which depend on
the surface type. The emissivities for all surfaces are computed
analytically using NWP data collocated with satellite radiances
[14], [25]. The analytical emissivity is computed by assuming
the following simplified radiative transfer equation:

TB = ε× Ts × Γ + T ↑ + T ↓ × (1− ε)× Γ

where TB is the brightness temperature,ε is the emissivity that
we would like to compute, Ts is the surface temperature, T ↑ and
T ↓ are the upwelling and downwelling radiances, respectively,
and Γ is the total atmospheric transmittance. Assuming that
NWP analyses can provide accurate temperature and moisture
profiles as well as a relatively accurate estimate of skin temper-
ature, using the CRTM to compute the total transmittance, we
can obtain the emissivity analytically by solving the previous
equation for the emissivity value (sole unknown). This gives
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us a relatively accurate estimate of the emissivity to compare
to the one retrieved by the MiRS. The analytical emissivity is
therefore computed using

ε =

(
TB−T↑

Γ − T ↓
)

Ts − T ↓ .

The following four conditions need to be satisfied for this
analytical emissivity to be valid: 1) Γ �= 0 (the equation is not
usable for opaque channels); 2) Ts �= T ↓ (the solution could
be unstable if this condition is not satisfied); 3) the surface
is assumed specular (for the validity of the simplified RT
equation); and 4) the atmosphere is assumed as clear sky (no
cloud, no rain, and no ice). The surface types included are
ocean, land, snow, and sea ice. When performing retrievals on
measurements, one of the first steps is to preclassify the surface
spot corresponding to the measurements. Depending on the
preclassifier, the specific mean and covariance matrix will be
extracted from the master covariance matrix and will be used
to constrain the amplitude and spectral shape of the emissivity
spectrum. The emissivity vector is varied within the iterations
based on the radiances and the CRTM Jacobians until a fit to the
radiances is found. A postprocessing step is then undertaken to
interpret the obtained emissivities into a set of derived products.
These include the snow water equivalent (SWE), the sea ice
concentration (SIC), and other snow and ice pack properties.
A postprocessing surface type is also determined to reflect the
retrieved emissivity spectrum. More details about the postpro-
cessing are given in Section III-F.

E. Channel Usage

Recognizing that, for most microwave channels, there is
a multitude of parameters that could have an impact on the
measurements, we adopted the approach of using all channels
together to retrieve all parameters simultaneously. This max-
imizes the information content available and accounts for the
impacts from the multitude of parameters that affect the chan-
nels as much as possible, assuming that the sensor data is of
high quality and that the RTM can simulate the measurements
with low uncertainty. Lower-atmospheric temperature sounding
channels, for instance, are sensitive to the surface, cloud, and
tropospheric humidity. Water vapor sounding channels also
have nonnegligible sensitivity to temperature, ice, cloud, and
rain. Surface-sensitive channels are also sensitive to the pres-
ence of cloud, rain, and water vapor. Therefore, this approach
is adopted in MiRS to solve for all parameters simultaneously to
benefit from their sensitivity to multiple channels and intercor-
relations. Another important reason is that the obtained solution
must fit all of the radiances measured simultaneously. This is
often an overlooked condition that must be satisfied. Alone, it
is not a sufficient condition to obtain the right solution, but it is
a necessary one. What is meant by this is shown in Fig. 2. What
we can say with certainty is that, if the state vector retrieved
is not satisfying the condition of fitting all measurements at
the same time, the retrieval is not the solution (otherwise, the
measurements are assumed wrong). Fitting the measurements

Fig. 2. Illustration of the necessary condition of having the retrieved solution
fit all measurements simultaneously.

is, on the other hand, only a necessary condition to obtain a
solution within the domain of possible solutions.

In theory, this should advocate for the usage of a simultane-
ous and comprehensive approach to the retrieval of geophysical
parameters and, as a corollary, should discourage the usage of
independent single-parameter retrieval algorithms which have
no mechanism to ensure that the obtained products will satisfy
this condition of fitting all measurements simultaneously.

F. Radiative Transfer and Jacobians

This inversion of cloudy/rainy radiances supposes the use of
a forward operator that can simulate the multiple scattering ef-
fects due to ice, rain, snow, graupel, and CLW at all microwave
frequencies and that can generate the corresponding Jacobians
for all atmospheric and surface parameters. As mentioned
earlier, the forward operator used in this paper is the CRTM
developed at the Joint Center for Satellite Data Assimilation
(JCSDA). CRTM produces radiances, as well as Jacobians,
for all geophysical parameters. It is valid in clear, cloudy, and
precipitating conditions. Derivatives are computed using the k-
matrix developed by TL and AD approaches. This is ideal for
retrieval and assimilation purposes. The different components
of CRTM, briefly, are the OPTRAN fast atmospheric absorption
model [21], the National Environmental Satellite, Data, and
Information Service (NESDIS) microwave emissivity model
[26], and the advanced doubling-adding radiative transfer so-
lution for the multiple scattering modeling [18]. Note that
CRTM is also the official radiative transfer model employed
at the National Centers for Environmental Prediction (NCEP),
National Oceanic and Atmospheric Administration (NOAA).
Also, note that MiRS is, in theory, valid for all sensors for which
CRTM is valid, although it has been applied and assessed (in
this paper) for microwave sensors only.

G. EOF Decomposition

The retrieval in MiRS is performed in EOF space through
projections back and forth at every iteration between the origi-
nal geophysical and reduced spaces. With the limited number of
microwave channels available through operational sensors, the
projection of the observations into the EOF space is not applied.
This method has been routinely used in operational centers
as a standard transform approach of control variables [19]. It
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has also been used in the context of retrieval of trace gases,
sounding, and surface properties [18], [23], [24]. Applying it in
the context of our 1DVAR retrieval is therefore not very original
except, possibly, for its extension to cloudy and precipitating
profiles. Only a limited number of eigenvectors/eigenvalues
are kept in this reduced space. The selection of how many
EOFs to use for each parameter is somehow subjective, but it
depends on the number of channels available that are sensitive
to that parameter. The advantages of performing the retrieval
in EOF space are the following: 1) handling the strong natural
correlations that sometimes exist between parameters which
usually create a potential for instability (or oscillation) in the
retrieval process (small pivot), which is reduced significantly
by performing the retrieval in an orthogonal space, and 2) time
saving by manipulating and inverting smaller matrices. The
projection in EOF space is performed by diagonalizing the
a priori covariance matrix

B × L = L×Θ

where L is the eigenvector matrix, also called as the transfor-
mation matrix, and Θ is the eigenvalue diagonal matrix which
contains the independent pieces of information. The retrieval
is therefore performed using the matrices/vectors Θ,ΔX , and
Kn (retrieval in reduced space). The transformations back and
forth between the two spaces are done using the transformation
matrix L. It is important to note that, at this level, no errors
are introduced into these transformations; it is merely a matrix
manipulation. However, the advantage of using the EOF space
is that the diagonalized covariance matrix and its corresponding
transformation matrix can be truncated to keep only the most in-
formative eigenvalues/eigenvectors. By doing so, we are bound
to retrieve only the most significant features of the profile while
leaving out the fine structures. How much truncation depends
on how much information is contained in the channels. In the
AMSU configuration, eight EOFs are used for temperature, four
for humidity and surface emissivity, one for skin temperature,
three for nonprecipitating cloud, and three for both rain and
frozen precipitation (a total of 20 nonprecipitating conditions
and a total of 22 precipitating conditions). It should be noted
that the same constraints are used for temperature and water
vapor retrievals regardless of precipitating or nonprecipitating
scenes.

III. MIRS SYSTEM IMPLEMENTATION

The previous section presented the general approach of
MiRS, the scientific options adopted, and the rationale behind
them. In this section, we will present the technical details of
the implementation which are important to understand. It also
touches on the issue of the convergence, which is significant for
two reasons: it determines if the essential condition for finding
a solution is met, and it plays the role of a powerful quality-
control metric.

A. Overview of the MiRS System

Fig. 3 shows how the MiRS works at a general level. There
are, in fact, two loops within the MiRS. In the first attempt re-

Fig. 3. Diagrams of the MiRS retrieval algorithm. The bottom panel describes
the retrieval attempts. The top panel shows the iterative approach adopted in
MiRS to reach a solution within each retrieval attempt. See text for details.

trieval, the system assumes a rain-free and ice-free atmosphere,
disabling the multiple scattering feature and assuming pure ab-
sorption from nonprecipitating cloud. This first attempt gener-
ally reaches convergence roughly 90%–95% of the time. In case
a convergence is reached, as shown in Fig. 3, then the system
exits with a valid output (but with no rain or ice by definition).
For the remaining 5%–10%, the cause of nonconvergence could
be due to certain factors such as mischaracterization of the
surface properties, overly strict convergence criteria, or the
inability of the RTM to account for some phenomena. With
MiRS, the latter is assumed specifically because the multiple
scattering is not activated during the first retrieval attempt and
because the RTM has the inability to model the signal caused
by the precipitation or frozen hydrometeors. Therefore, in the
second retrieval attempt, multiple scattering is turned on. In
this case, no nonprecipitating cloud is retrieved, given the
radiometric difficulty in distinguishing what is precipitating and
what is suspended liquid water. The EOF distribution is also
altered slightly in this second attempt, as noted in the previous
section.

For each retrieval attempt, the iteration loop is the same,
and it is also shown in Fig. 3. To start the iteration process,
an initial state vector is used as the input to the CRTM
forward model, and it is assumed to be the first guess esti-
mate. During the iterative process, the state vector is altered
using the process described in Section II-B. This vector is
deemed to be the solution when the measurements are fit to
within noise and RTM uncertainty, and convergence has been
reached.
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TABLE I
OVERVIEW OF OPERATIONAL PRODUCTS FROM MiRS. THE SENSORS ARE

NOAA-18/19, METOP-A, AND DMSP-F16 SSMI/S

B. MiRS Capability and Operational Implementation

The MiRS system was implemented operationally in several
phases, allowing a gradual increase in capabilities in terms of
the number of products and the number of sensors supported.
Table I describes the timeline of the MiRS operational im-
plementation and, for each phase, lists the sensors, as well
as the products, it declared operational. In addition to these
operational products, demonstration products are also available
without being declared officially operational: sea ice type (mul-
tiyear and first year), snow effective grain size, and temperature
and moisture profiles for DMSP-F16 SSMI/S. The most recent
version (5.0) at the end of 2009 extended SSMI/S products to
include the RWP, IWP, and RR.

C. Noise Estimation

Whenever possible, i.e., when having access to original
radiometric counts, such as in the case of AMSU and MHS on-
board NOAA-18/19 and Metop-A, MiRS computes an accurate
instrument noise estimate, following the approach described in
[22]. This is based on the standard deviation of the differences
between the radiometrically computed and measured tempera-
tures of the hot calibration load. When access to these counts
is not possible, MiRS relies on advertised values of instrument
noise levels for those particular sensors (such as SSMI/S).

Fig. 4. Time series of the noise level for channel #11 of AMSU (57 GHz)
onboard NOAA-18 since its launch time in mid-2005. This channel is aimed at
sounding temperature. Slight seasonal variations are noticed, with no expected
impact on the retrievals.

This noise estimate (NeDT), when computed, is monitored
on a daily basis to detect any anomalies or drifts. This noise
is an input to the 1DVAR algorithm. This has the effect of
automatically reducing the weight of a particular channel in
the solution-finding process when the instrument’s noise level
increases.

An illustration of the noise level monitoring for NOAA-18
since its launch in mid-2005 is shown in Fig. 4. If the com-
puted noise exceeds the expected range of variation (defined
by instrument specifications), an electronic mail notification is
triggered.

This instrument noise represents the first part in matrix E
presented in Section II-B. The other part represents the radiative
transfer model uncertainty, which will be described in more
detail in Section III-E.

D. Footprint Matching

AMSU/MHS and SSMI/S sensors have their individual chan-
nels looking at slightly different horizontal footprints on the
Earth in terms of size. The footprint size for AMSU is 45 km at
nadir, while MHS is 15 km. Because a 1DVAR system is com-
putationally more demanding than regression-based algorithms,
MiRS runs operationally at AMSU resolution for the case of
NOAA-18, NOAA-19, and Metop-A, where MHS footprints
are simply averaged within the AMSU footprint, as shown in
Fig. 5. There are plans, however, to start running MiRS at a
higher resolution in the near future (MHS resolution).

For the case of SSMI/S, for pure computation time con-
straints, all channels [environmental channels (ENV), imag-
ing channels (IMG), and lower atmospheric sounding chan-
nels (LAS)] are mapped by a simple averaging to the upper
atmospheric sounding (UAS) channel resolution. The MiRS
resolution, when run on SSMI/S data, is therefore that of UAS
channels, which is approximately 75 km for all scan positions.
The resolutions for IMG, ENV, and LAS channels are 12.5, 25,
and 37.5 km, respectively (Fig. 6).

E. Bias Correction and RTM Uncertainties

The radiances, before being ingested into the MiRS algo-
rithm, are bias corrected. This correction removes potential
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Fig. 5. Schematic description of the scan geometry and the footprint matching
performed for the AMSU/MHS sensor pair onboard (NOAA-18, NOAA-19,
and Metop-A). The single AMSU footprint is depicted by the larger circle,
which encompasses the MHS footprints depicted by the nine smaller circles.

Fig. 6. Schematic description of the scan geometry and the footprint matching
performed for the SSMI/S sensor onboard DMSP-F16. The largest circle
represents the UAS footprint, with 1 × 1, 1 × 2, and 1 × 3 circles representing
the IMG, ENV, and LAS footprints, respectively.

inconsistencies between the measurements and the forward
model used in MiRS. A set of different coefficients is generated
offline for every sensor. The coefficients are also generated for
different scan positions (or angles for the case of cross-track
sensors) to account for any scan asymmetry anomalies. The
approach used to compute these biases relies on comparisons
between simulations and measurements of brightness temper-
atures. The simulated radiances in this case use the CRTM
forward model and take ECMWF from multiple seasons as
inputs, interpolated in time and space to the specific locations
of the measurements. These comparisons are done exclusively
over the ocean because the emissivity over nonocean surfaces
is not known, which limits the possibility to determine biases
for surface-sensitive channels. Over the ocean, we use surface
wind speed as an input to the emissivity model FASTEM-3
[7] to generate emissivities. These emissivities, combined with
atmospheric parameters from the analyses, allow the genera-
tion of the simulated brightness temperatures which are then
compared to real measurements. In addition to biases, the
comparisons are also used to generate estimates of radiative
transfer model (RTM) uncertainties which help in making
up the instrument/modeling error covariance matrix E when
combined with instrument noise estimates. These RTM uncer-
tainties are calculated via the standard deviation of the radiance
comparisons, scaled down to account for uncertainties in the
geophysical inputs themselves. The specific RTM uncertainties
for AMSU-A, MHS, and SSMI/S channels are captured in
Table II.

It is well known that the radiance corrections are highly
affected by cloud and coastal contamination, even if we limit

ourselves to nominal ocean cases. The issue of bias, or more
explicitly how to handle the inconsistencies between the mea-
surements and the RTM used in the retrieval algorithm, could
be the subject of a study by itself given its complexity. Methods
to remove these biases range from calculating a statistical bias
to using quantities of geophysical parameters as predictors to
estimate the bias for a given scene depending on its air mass
properties. Regardless of the approach, care should be taken
to choose the appropriate scenes for calculating biases without
contamination or introduction of artifacts, such as seasonal
dependence. For the purpose of this paper, we have made the
choice of computing the corrections by adjusting the peak of the
histograms of the error distributions for all channels and all scan
positions to coincide with zero. This has the advantage of reduc-
ing the dependence of the obtained correction on cloud filtering,
coastal scene removal, etc. These less frequent contaminations
tend to materialize in the tail end of the error distributions which
are Gaussian, to which the peak of the histogram is usually
insensitive.

Note that, for the case of DMSP-F16 SSMI/S data, it is
known that these display obvious radiance anomalies due to the
main antenna emission and the solar intrusion to warm load [1],
[17], [28]. The SSMI/S data used in this paper are the anomaly
corrected data.

F. VIPP

The postprocessing stage in MiRS mentioned earlier is
shown in Fig. 7. After the 1DVAR step is performed, a number
of primary products are generated. These are the surface, atmo-
spheric, cloud, and hydrometeor parameters that most directly
impact the brightness temperatures. These core products are
then translated into derived products via two mechanisms.
The first one is vertical integration, and the second one is
postprocessing.

1) Vertical Integration: The retrieved moisture profile is
vertically integrated to generate the TPW, which, by definition,
ensures there is consistency between the profile and the TPW
(as opposed to retrieving the TPW as a separate product).
A similar vertical integration is performed to generate RWP,
IWP, and CLW, as shown in Fig. 7. One word of caution
is warranted when mentioning CLW, IWP, and RWP. These
parameters impact the brightness temperatures and have some
signal in the measurements, but it is critical to keep in mind that
their impact is mixed with that of the size of the droplets, the
vertical distribution, the particle size distribution, the density,
the mixed phase nature, and the shape of the droplets. The
problem is therefore notoriously ill-constrained. In addition,
the beam filling effect, the uncertainty in the modeling of the
scattering, the absorption, the asymmetry and their temperature
dependence, and the resulting products become essentially ef-
fective parameters that account for all of these unknowns. These
products are therefore destined for what we label as advanced
users who realize that the absolute amounts of CLW, IWP,
and RWP need to be used with care, given that they depend
significantly on the assumptions made about those unknowns
mentioned previously (especially the droplet mean sizes). For
example, alternate assumptions about rain drop particle size
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TABLE II
INSTRUMENT MODELING ERROR FOR AMSU-A AND MHS CHANNELS FOR MiRS APPLIED TO NOAA-18, NOAA-19, AND

METOP-A (M2) AND FOR SSMI/S CHANNELS FOR MiRS APPLIED TO F16 AND F18

Fig. 7. Description of the MiRS postprocessing stage. See text for more
details. The operational products generated by the VIPP include TPW, IWP,
RWP, CLW, SIC, SWE, and RR. Other products could be generated in fu-
ture versions of MiRS (wind speed/vector, cloud top, thickness, phase, and
snowfall rate).

distributions could yield different RWP retrieval results given
the same set of observations. These assumptions are made, in
the case of MiRS, inside the forward operator CRTM. If enough
information was available within the radiometric measurements
themselves, these unknowns could be included within the re-
trieved state vector. This is not the case with the limited number
of channels available in the current microwave sensors.

Fig. 8. Details of the postprocessing stage of MiRS that deals with the
interpretation of the retrieved emissivity spectrum. See text for further details.

2) Emissivity Postprocessing: The second type of postpro-
cessing, shown in Fig. 8, is the interpretation of the emissivity
spectrum (spectra are represented schematically by multiple
curves in the figure). Recall that the emissivity is made part of
the retrieved state vector to simplify the overall retrieval and to
solve for the parameters that most directly impact the brightness
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Fig. 9. Comparison of the convergence metrics between two versions of the
MiRS, (top) with the multiple scattering turned off and (bottom) with the
multiple scattering on. Convergence, as defined in the text, is reached almost
everywhere, including when there is precipitation.

temperatures first. Although the emissivity could be used by
itself (for instance, as a proxy parameter for the degree of
wetness over land), it is also desirable to interpret the magnitude
and shape of the retrieved emissivity spectrum into more readily
usable products. SIC over sea ice and SWE over snow-covered
land are currently derived from the emissivity spectrum using a
postprocessing step.

This interpretation of the emissivity spectrum relies on the
development of an offline-computed catalog of emissivity spec-
tra for a multitude of values of the parameters to be derived. The
postprocessing stage is then a simple look-up-table procedure
that searches for the catalog precomputed value that corre-
sponds to a spectrum that matches closely with the retrieved
one. Along with the search of SIC, the type/age of the ice (mul-
tiyear and first year) is also cataloged and searched, given its
importance/impact on the emissivity spectrum. Similarly, along
with the search of SWE, the effective grain size is also cata-
loged and searched. These two by-products (sea ice type and
effective grain size) are made available within MiRS products
for testing purposes and are not officially declared operational.

3) Rain Rate Postprocessing: One important parameter re-
trieved by MiRS using vertical integration and postprocessing

(VIPP) is the surface RR, which is discussed and analyzed
at length in [13]. The importance of the RR is related to its
direct societal impact. From the radiometric point of view, the
more appropriate parameter is the instantaneous integrated rain
amount in the vertical column at the time it is sensed, which
has a direct impact on the brightness temperature measurement.
Because the RR needs a time variability dimension to obtain
the rate in millimeters per hour and because the sensors being
considered use polar-based orbits (and not geostationary), we
adopted an empirical relationship for deriving this parameter.
The RR is retrieved using the rain, ice, and cloud profiles. It
also uses the atmospheric temperature-based freezing level and
the lower atmospheric temperature lapse rate, given their corre-
lations with the presence or absence of the rain at the surface.
This statistical relationship is generated using a number of runs
of the cloud resolving model MM5. It is given generically in
the following equation:

RR = A0 +A1 × IWP +A2 ×RWP +A3 × CLW

where the coefficients Ai, i = 0, 1, . . ., are computed offline to
capture the physical link between the hydrometeor parameters
from the MiRS first step and the surface RR. It is important
to note that the former is not sensor-specific parameters and
that the relationship will apply for all sensors. Thus, one of the
advantages of the MiRS RR retrieval is that it merely depends
on a relationship which associates the RR presence and in-
tensity with the combination of hydrometeors and geophysical
products derived by the MiRS first step. The quality of the RR
derived by this relationship will obviously be modulated by
the quality of the inputs listed in the aforementioned equation.
This latter quality depends on the information content in the
measurements of the sensor being considered.

The assessment of the quality of the MiRS RR will be
discussed later in this paper and will also be the object of a
separate more detailed publication.

G. Convergence Criteria

Several criteria have been reported in deciding on the conver-
gence of variational methods, among which are the following:
1) testing that the increment of the parameter values at a given
iteration is less than a certain threshold (usually a fraction of the
associated error of that particular parameter); 2) testing that the
cost function J(X) decrease is less than a preset threshold; or
3) checking that the obtained geophysical vector X at a given
iteration produces radiances that fit the measurements within
the noise level impacting the radiances. We have chosen the last
criterion because it maximizes the radiance signal extraction.
A convergence criterion based on J(X), while mathematically
correct, would produce an output that carries more ties to the
background, and therefore, it would be more inclined to present
artifacts due to it. The convergence criterion adopted is when

ϕ2 =
1

N

[
(Y m − Y (X))T × E−1 × (Y m − Y (X))

]
≤ 1

where N is the number of channels used for the retrieval
process. This mathematically means that the convergence is
declared reached if the residuals between the measurements and
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Fig. 10. Example of the convergence reached with MiRS over a tropical storm after the multiple scattering feature was turned on (right) during the retrieval.
Although the convergence is much improved, there are pockets where the retrieval does not converge.

the simulations at any given iteration are less or equal than one
standard deviation of the noise that is assumed in the radiances.
Fig. 9 shows an example of daily maps of the convergence
metric ϕ2 as generated from MiRS.

This figure illustrates that the convergence is reached glob-
ally, with the ϕ2 being close to unity in most cases (bottom
panel). It also illustrates that including the multiple scattering
option and solving for liquid and frozen hydrometeors in the
state vector are key to achieving convergence in precipitat-
ing/icy conditions. This could be viewed as a highly nonlinear
way of doing a precip-clearing of the radiances. The inclusion
of these control parameters within MiRS allows, indeed, the
retrieval to reach convergence and to produce other parameters
such as the temperature profile. Note that the convergence map
in Fig. 9, because of its size, hides some local nonconvergence
in rainy conditions. Indeed, not every single point reaches
convergence, as shown in Fig. 10 for a particular storm case.
The nonconvergence will, however, be an indication of an
abnormality in the retrieval: some difficult to model features,
some mixed signal in the measurement (at the coast or sea ice
edge for instance) for which a radiometric effective emissivity
could not be found, etc. These cases could therefore easily be
screened out using a filter based on the ϕ2 parameter.

Note that fitting the radiances within the noise level is a
necessary, but not a sufficient, condition in finding the right
solution, as explained earlier. We should note here that the
convergence criteria do not alter the balance of weights given
to the radiances (or to the background) in the cost function that
the 1DVAR minimizes.

H. MiRS Applicability to Extreme Weather Events

MiRS uses the CRTM for the generation of the simulated
radiances and the Jacobians, which are both necessary for the
successful variational retrieval. CRTM is valid in clear, cloudy,
and rainy conditions, which makes MiRS also valid in those
conditions. When we say valid, we mean that the convergence is
reached, and a radiometric solution is found. This makes MiRS
an ideal algorithm in inverting radiances measured in storm or

hurricane conditions. As clearly shown previously in Fig. 9,
the inclusion of hydrometeors in the retrieval and the use of
a full multiple scattering radiative transfer allow us to reach the
convergence globally. Fig. 10 shows a close-up of a retrieval
field over a storm over the Continental United States (CONUS)
before and after turning on the multiple scattering and including
the liquid and frozen precipitations in the state vector. It shows
that the convergence is dramatically improved, but a few points
remain for which convergence was not obtained.

The solution, whose accuracy depends on many unknowns
that cannot be determined because of the lack of informa-
tion content, is constrained by the covariance matrix (and
the cross-correlations between the different parameters that
are contained in it), by the physically based Jacobians that
indicate how the solution should be altered in order to fit the
measurements, and by the physically based retrieval that fits
the simulated radiances based on the solution to the radiances
measured.

Obtaining convergence in extreme weather conditions, de-
spite the physical constraints put on the solution, is not syn-
onymous with accurate retrievals. From offline simulations
(not shown here) where the true solution was known, it was
concluded that the hydrometeor parameters and the temperature
profile could be considered sufficiently accurate. On the other
hand, the moisture profile, CLW, TPW, land surface temper-
ature (LST), or emissivity is not to be used in the presence
of atmospheric rain or ice. It is intuitively easy to understand
that, with the presence of precipitating rain in the column, it is
radiometrically difficult to distinguish the impact of the liquid
water from the impact of the water in vapor form or from the
nonprecipitating liquid water. If the rain is present in large
enough quantity, it is also understandable that the signal from
the surface will be screened out, thus reducing the capacity to
retrieve surface parameters.

IV. MIRS ASSESSMENT

In this section, we will focus on presenting an overview of
the assessment of the quality of the MiRS products. Because



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOUKABARA et al.: MiRS: AN ALL-WEATHER 1DVAR SATELLITE DATA ASSIMILATION AND RETRIEVAL SYSTEM 11

TABLE III
OVERVIEW OF THE ASSESSMENT SOURCES USED FOR THE DIFFERENT MiRS PRODUCTS. NOTE THAT SOME OF THESE VALIDATIONS

ARE PERFORMED DAILY (CUMULATING EVERY DAY) FOR THE FOLLOWING SENSORS: NOAA-18 AMSU/MHS,
NOAA-19, METOP-A, AND DMSP-F16 SSMI/S. SEE TEXT FOR MORE DETAILS

of the large number of products and because the scope of
this paper is mainly the description of the MiRS system, the
assessment presented here will be succinct but detailed enough
to give confidence in the usage of these products. Additional
publications dedicated to individual parameters will present
thorough assessments of each product.

There are three types of assessments performed on MiRS-
based products. 1) The first one is the routine assessment
of the MiRS algorithm with respect to other algorithms, to
NWP analysis, or to other sensors. This assessment generally
offers a global coverage of the comparisons, as well as robust
statistics, given the abundance of points. Stratification of the
performances (by angle, by scan position, by latitude, etc.) is
also made possible in this type of assessment. 2) The second
type of assessment uses highly valued references to assess the
performances and is the closest to the process of validation.
Although the main advantage is the use of high-quality data
(such as radar and gauge data for the RR assessment and
radiosondes or dropsondes for the temperature and moisture
profile assessment), it generally suffers from other limitations
such as the geographical distribution of the reference data
sources, the intravariablity of the reference data quality, and
the representativeness of the footprint cell (w.r.t. the point
measurement of the reference source). 3) The third type of

assessment is simply a qualitative assessment of the behavior
of MiRS products. The objective in this case is to ensure that
the products behave individually and collectively in a physically
and meteorologically consistent fashion. Table III lists all of the
references used to assess MiRS products for each product.

A. Routine Assessment of MiRS Products

Routine assessment is done for all products of MiRS and
for all sensors (NOAA-18, NOAA-19, Metop-A, and DMSP-
F16 SSMI/S) using daily comparisons with NWP analyses from
NCEP and ECMWF.

1) Temperature Sounding: Fig. 11 shows an example of that
assessment in the form of maps of atmospheric temperature at
100 mbar, as inverted by the MiRS algorithm and as provided
by Global Data Assimilation System (GDAS) analyses. Note
that NWP analyses are interpolated in time and space to the
exact location and time of the satellite measurement before this
comparison is performed. We can see that all major features
of the temperature field are well captured by MiRS retrievals.
In Fig. 12, the same set of temperature profiles from MiRS
and GDAS was used to compute vertical statistics of bias
and standard deviation of the differences. Only cases over the
ocean (which are officially declared operational) were used
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Fig. 11. Global fields of atmospheric temperature at the 100-mbar layer (top)
as determined by the MiRS algorithm and (bottom) as provided by the GDAS
analysis. Field corresponds to November 7, 2009.

Fig. 12. Temperature profile performances for the ocean case as assessed by
comparison to GDAS analyses. The standard deviation is shown at the right
panel, while the bias is shown at the left one. The red lines correspond to the
predefined requirements set for MiRS.

Fig. 13. Global fields of atmospheric moisture at 500-mbar layer (top) as
determined by the MiRS algorithm and (bottom) as provided by the GDAS
analysis. N18 data from November 7, 2009.

to compute these statistics. Performances of the temperature
profile over ocean surfaces from MiRS, when compared to
GDAS, are deemed reasonable, with a low bias overall and
a low standard deviation, which perhaps has a tendency to
increase at the surface and at the tropopause levels as expected
but remains within the predefined requirements (see Fig. 12).
More assessments of the temperature performances will be
summarized in the following validation section by comparing
MiRS retrievals to a multitude of reference data sources.

2) Moisture Sounding: The same type of comparison is per-
formed for the vertical atmospheric moisture profiles. Fig. 13
shows maps of the humidity field at the 500-mbar layer as
retrieved by MiRS and as provided by the GDAS analysis. From
this figure, we can see that the majority of moisture plumes
and other large scale features are well captured by MiRS
retrievals. A summary of the performances of the water vapor
performances, as compared to NWP analyses and radiosondes,
will be presented in the following validation section.

3) Emissivity: Another example of the routine monitoring
of MiRS retrievals is shown in Fig. 14 for the emissivity prod-
uct. This figure shows two maps corresponding to the MiRS
retrieval at the 50.3-GHz channel (top) and the GDAS-based
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Fig. 14. Global fields of land emissivity for the 50.3-GHz channel (top) as retrieved by the MiRS algorithm and (bottom) as provided by the analytical emissivity
based on the GDAS analysis. Field corresponds to February 2, 2009.

analytical emissivity (bottom). A discussion on the method-
ology that is used to compute the analytical emissivity was
provided previously in Section II-D. Globally (only land is
shown), MiRS-based emissivity retrievals are very similar to
the analytical emissivity, even if the two methods are different
and independent.

We could see, however, that the two estimates of emissivities
differ in some areas, which could be attributed to the following:
1) the poor accuracy of the skin temperature estimate from
GDAS over the high-latitude regions, for instance, where snow
and ice cover the surface, and 2) the nonvalidity of the assump-
tions made to compute the emissivity over mountainous regions
or over the Amazon forest where the surface is significantly
nonspecular. Note that the accuracy of the analytical emissivity
depends strongly on the accuracy of the temperature and mois-
ture information provided, as well as on the skin temperature.

4) TPW Extended Globally: The TPW from MiRS is a
simple vertical integration of the water vapor profile, as men-
tioned earlier. The handling of the surface through the retrieved
emissivity vector allowed us to extend the retrieval of the TPW
over all surfaces [3], as shown in Fig. 15.

The extended TPW globally (ocean, land, sea ice, snow,
and coastal areas) has proved to be a useful product for many

Fig. 15. Performances of the MiRS-based TPW. (Top) MiRS and (middle)
GDAS fields compare favorably. (Bottom) Scatterplot between the two presents
the statistical performance (globally).

applications, including short-term precipitation forecasting and
study of the hydrological cycle. Fig. 15 shows that MiRS
compares favorably to GDAS in terms of the global distribution
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of the features (frontal systems, moisture plumes, etc.) as well
as in terms of statistical performances. The global statistics
show an overall bias of 0.38 mm and a standard deviation of
2.82 mm, which are considered reasonable. In a separate study
[3], dedicated to the assessment of the TPW global coverage
from MiRS, these performances are computed using a number
of different reference data sets, and they were stratified by
surface background types as well as by sensors. The TPW
from MiRS was found to be valid over all surface types, except
when there is precipitation. In the presence of precipitation, it
is radiometrically difficult to distinguish water vapor signature
from liquid water signature.

5) Surface Parameters: A variety of surface properties are
retrieved from MiRS. These include the LST, SIC, SWE, and
snow cover extent. The latter three cyrospheric parameters are
derived explicitly from the MiRS retrieved surface emissivity,
as described in Section III-F.2). An example of MiRS LST is
shown in Fig. 16. The operational LST refers to skin temper-
ature over snow-free land surfaces only. MiRS also retrieves
skin temperature over snow-covered land and nonland (ocean
and sea ice) surfaces, but these are not declared operational.
The main reason for not declaring those products operational is
the fact that limited validation has been performed on them.
Another reason is the absence so far of an operational user
request. Specifically, Fig. 16 shows the retrieved LST from
MiRS NOAA-18 on March 14, 2010, (top) and the comparison
to collocated ECMWF analysis (bottom). Overall, the surface
temperature from MiRS is consistent with other sources (in this
case, skin temperature from ECMWF). Further assessment of
LST will be presented in a separate study. Globally, the bias is
found to be around 1 K–2 K, and the standard deviation is found
to be between 5 K and 6 K. The differences are found to be more
pronounced in the high-latitude regions and in areas where
snow covers the surface. One must note that skin temperature
is expected to be different when measured from the microwave,
where the wavelength senses up to a few centimeters inside the
soil, and when measured by infrared sensors which tend to be
sensitive to the skin temperature only. This penetration depth
is dependent on the frequency and on the type of soil, which
creates both systematic (biases) and scattered differences that
contribute to the overall standard deviation.

Fig. 17 shows an example of SIC retrieved on February
20, 2010, from NOAA-18 data. The figure shows both the
MiRS product obtained from ascending passes (top panel) and
the product produced from AMSR-E microwave data (middle
panel) using the daily product obtained from the NASA Team 2
algorithm [20]. The lower panel shows the corresponding dif-
ference field (MiRS-AMSR-E) and indicates that agreement
with an independent microwave estimate is quite good, with
the largest differences located near the ice edge. This is to be
expected since the SIC (or percentage) is typically footprint
dependent and since the two sensors being compared here
(AMSU and AMSR-E) have definitely different footprint sizes
and shapes. This difference is more pronounced at the sea
ice edge where heterogeneity is maximal. More details on the
MiRS SIC retrievals may be found in [16].

In Fig. 18, SWE is presented, also retrieved on February
20, 2010, from NOAA-18. Again, the MiRS product based on

Fig. 16. (Top) LST derived from MiRS using NOAA-18 data on March 14,
2010, for ascending orbits, (middle) field of LST for collocated ECMWF
analysis, and (bottom) scatter plot with statistics. Points with subfreezing
temperatures were removed from the scatter plot.

descending passes is shown at the top panel, while the NASA
AMSR-E/Aqua Daily Level 3 product [15] is shown at the
middle panel. At the bottom panel is the daily operational ice
and snow cover IMS analysis produced by the National Ice
Center from the Interactive Multisensor Snow and Ice Mapping
System [11].
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Fig. 17. Example of SIC (percent) retrieved on February 20, 2010. Shown are
(top) MiRS algorithm using NOAA-18 data, (middle) AMSR-E NASA Team
2, and (bottom) difference field.

Overall, the products are fairly consistent, with the best
agreement over Siberia, presumably due to the less ambiguous
signal over the colder, dryer, and deeper snow cover and larger
differences over southern areas of the snow pack. A good
agreement of the IMS analysis with the SIC retrievals shown
in Fig. 17 is also noted.

Fig. 18. Example of SWE (in centimeters) retrieved on February 20, 2010,
from the (top) MiRS and (middle) NASA Level 3 Daily product. The IMS daily
ice and snow cover analysis is shown at the bottom panel.

6) Cloud and Hydrometeor Parameters: As part of the
MiRS postprocessing described in Section III-F.3, the MiRS
derives the instantaneous RR. Fig. 19 shows a comparison
between the daily NOAA/NCEP Climate Prediction Center
(CPC) precipitation based on rain gauge analysis and the daily
MiRS precipitation estimate (in millimeters per day) generated
from the instantaneous RRs derived from NOAA-18, Metop-A,
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Fig. 19. (Top) Daily CPC precipitation over the CONUS based on rain gauge
analysis and (bottom) MiRS precipitation composite based on RR retrievals
from NOAA-18, Metop-A, and DMSP-F16.

and DMSP-F16. In this comparison, the limited temporal and
spatial coverage associated with the satellite sensors used to
generate the MiRS precipitation estimate must be considered,
compared to that of the rain gauges. However, it is clear that the
MiRS precipitation estimate is able to detect rainfall events with
geographical distribution and intensity comparable to those of
the CPC analysis.

7) Monitoring of Pentads, Weekly, and Monthly Composites:
Another type of monitoring of MiRS products that is performed
at NOAA consists of generating pentads, weekly, and monthly
composites of global maps from the daily MiRS products.

This time-compositing process allows us to check the slow
moving features (seasonal or climatic features) by removing
the high-frequency variability, but it also allows us to detect
any persistent defects in the MiRS retrievals. Fig. 20 shows
the monthly averaged surface emissivity at 89 GHz for Febru-
ary 2008 using NOAA-18, where lower values over northern
hemispheric land masses have been influenced by persistent
snow cover. Fig. 21 shows the comparison between the MiRS
monthly rain composite using NOAA-18 data and the rain
composite generated using the Microwave Surface and Precip-
itation Products System (MSPPS) heritage algorithm [9] which
MiRS is scheduled to gradually replace in the next couple of

Fig. 20. Monthly average of MiRS land emissivity at the 89-GHz channel.
Data correspond to February 2008 obtained from NOAA-18 AMSU/MHS
sensors.

Fig. 21. Comparison of two monthly composites of RR from the (top) MiRS
and (bottom) heritage algorithm MSPPS. Notice the significantly reduced false
alarms at the sea ice edges by the MiRS algorithm. The unit is in millimeters
per hour. Both composites are based on NOAA-18 data.

years. The compositing is done at different spatial resolutions
(1◦ or 2.5◦) and is performed on all sensors for which MiRS
is applicable. The original resolution of the MiRS retrieval is
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Fig. 22. Global map depicting different information and flags as they relate to
the outputs of MiRS. Note that some flags are not exclusive, and therefore, the
color visible is not indicative of only one flag being turned on.

that of AMSU, as mentioned earlier, but the MSPPS original
resolution is that of MHS. We could see in this figure that the
persistent false alarm at the sea ice edges is pretty clear in
the MSPPS algorithm. This is due to the mixed signal in the
brightness temperatures for which the algorithm is not trained.
The MiRS algorithm dramatically reduces this issue, as shown
in Fig. 21, due to the fact that the emissivity is part of the state
vector, making the emissivity as the proxy product that takes in
the mixed signal (instead of the atmospheric parameters).

8) Quality Control: In addition to the convergence metric
mentioned earlier, which is an excellent tool to determine if
anything is inconsistent between the measurements and the
solution found, a number of other flags and indicators are also
part of the MiRS outputs. Fig. 22 shows a global map of those
flags and corresponding values. They indicate profiles where
the retrieval was nominal or had no meteorological event as
zero; where a bad retrieval or poor quality measurements as
one; where precipitation was detected (light, medium, or heavy
as two, three, and four, respectively); where a vertical inversion
was found in temperature and/or humidity as five, six, and
seven; and where supersaturation occurred in clear sky as eight
and cloud or precipitating sky as 9. In addition, several quality
assessment parameters are optionally computed within MiRS,
but they are not displayed here. These are the uncertainty matrix
S, the contribution function D, and the average Kernel A.
The formulation of these quality-control metrics is given in the
following:

S =B −B ×KT (K ×B ×KT + E)−1 ×K ×B

D =B ×KT (K ×B ×KT + E)−1 × (Y (X)−K ×X0)

A =D ×K.

These parameters could be useful for NWP applications and
blending techniques since they provide objective information
about the uncertainties of the retrievals and the radiometric
information content used on a point-to-point basis.

TABLE IV
SUMMARY OF THE MiRS-BASED TEMPERATURE PROFILE

PERFORMANCES (BIAS AND STANDARD DEVIATION IN KELVIN)
WHEN COMPARED TO ECMWF AND GDAS ANALYSES

AS WELL AS TO OPERATIONAL RADIOSONDES.
SEE TEXT FOR MORE DETAILS

B. Validation

This section will present a number of validation results for
some of the MiRS parameters. It will not go into extensive
details which may be found in current or future publications
[4], [13], [16]. It complements the previous section related to
routine monitoring of MiRS performances. Some of the routine
performances (computed against NWP analyses for instance)
will also be summarized in table format in this section.

1) Temperature and Moisture Sounding: The performances
of the MiRS-based temperature and moisture sounding pro-
files are presented in Tables IV and V, respectively. They are
stratified by ocean and land surface types and are given at five
different atmospheric layers corresponding to 100, 300, 500,
800, and 950 mbar for temperature comparison and four layers
for moisture sounding since the 100-mbar layers are not reliable
from the reference data, particularly radiosonde. Note, however,
that all layers have been assessed. This is the only snapshot
of those performances. We notice that temperature biases are
relatively consistent whether we use ECMWF or GDAS as a
reference. The biases over the ocean are below 1 K and above
500 mbar and tend to increase slightly at the surface to 1.7 K
and 1.1 K for ECMWF and GDAS, respectively. Over land, they
are roughly the same (within a half degree margin).

The uncertainty of the temperature profile, measured by the
statistical standard deviation of the differences between the
reference data and MiRS retrievals, is also consistent between
ECMWF and GDAS. Over the ocean, it varies between 1.8 K
at 100 mbar and 2.7 K at 950 mbar and between 1.5 K at
100 mbar and 2.8 K at 950 mbar for ECMWF and GDAS,
respectively. Over land, it varies between 1.8 K at 100 mbar
and 4.5 K at 950 mbar and between 1.7 K at 100 mbar and
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TABLE V
SUMMARY OF THE MiRS-BASED MOISTURE PROFILE PERFORMANCES

(RELATIVE BIAS AND RELATIVE STANDARD DEVIATION IN PERCENTAGE

OF THE REFERENCE WATER VAPOR AMOUNTS) WHEN COMPARED TO

ECMWF AND GDAS ANALYSES AS WELL AS TO OPERATIONAL

RADIOSONDES. SEE TEXT FOR MORE DETAILS

4.8 K at 950 mbar for ECMWF and GDAS, respectively. This
indicates a higher uncertainty in temperature near the surface.
Note that only temperature profiles over the ocean are officially
declared operational. When we analyze the comparison to the
radiosondes data, the results are not similar. The biases are
slightly lower at the surface for the ocean and slightly higher
at the surface for the land comparison. The standard deviation
over the ocean is consistent with that obtained using ECMWF
and GDAS, but the uncertainty over land is slightly lower than
what was obtained with ECMWF and GDAS (3.1 K instead of
4.5 K and 4.8 K at the surface).

The disparity of the results is more striking for the case of
the water vapor performances, as could be seen in Table V.

The standard deviation over both land and ocean is consistent
between the comparisons made with ECMWF and those made
with GDAS, ranging between 41% at 300 mbar and around
13.5% at the surface for the ocean case and ranging between
54% at 300 mbar and 30% at the surface for the case of land.
The bias, however, is not consistent between the ECMWF and
GDAS assessments for both ocean and land cases. It is also dif-
ferent from the assessment results obtained when comparing to
radiosondes. The uncertainty computed using the radiosondes
as a reference is similar at the surface with that obtained using
ECMWF or GDAS, but it diverges to higher uncertainty values
at higher altitudes.

The inconsistency in the results, especially between using
NWP analyses (ECMWF or GDAS) and radiosondes, suggests
that there is intravariability between the different references
used. This makes us conclude that MiRS performances are well
within the uncertainty of all of the reference data taken together.
If there is a systematic difference found in MiRS, it would, in
theory, appear in all comparisons.

2) Surface Properties (Emissivity, SWE, and SIC): The sur-
face properties were also assessed thoroughly using several
reference data from the analytical emissivities and the MSPPS

TABLE VI
ASSESSMENT OF THE 23.8- AND 50.3-GHz EMISSIVITY PERFORMANCES

FOR SEA AND ICE FOR THE FORMER (RIGHT) AND FOR

LAND AND SNOW FOR THE LATTER (LEFT)

algorithm for the emissivity product to the AMSR-E data and
other ground-based measurements for SIC and SWE. Table VI
summarizes, for instance, the stratified performances over land
and snow and over sea and ice (bias and standard deviation)
of the MiRS emissivity when compared to the analytically
derived emissivity for NOAA-18 AMSU channels (50.3 and
23.8 GHz, respectively). These results indicate that emissivity
biases are relatively small (around or less than 1%) and that
standard deviations vary between 2% and 3% depending on the
channel and the surface type. Higher frequency channels, which
are more sensitive to atmospheric contamination (specifically
cloud), have higher uncertainties (not shown here) but are still
retrieved with a reasonable accuracy since they are spectrally
constrained with the emissivity covariance matrix and by the
simultaneous retrieval of the atmospheric products.

The SWE retrieved by MiRS, which is based on the post-
processing described in Section III-F and is applied to the
retrieved emissivities, was compared to a number of reference
data sources including the AMSR-E, the Interactive Multi-
sensor Snow and Ice Mapping System (IMS), and the Naval
Research Laboratory’s algorithm (for SSMI/S case). It was also
compared to ground-based snow property measurements made
in Northern Canada in 2003. Fig. 23 shows the results of this
comparison along with the comparison between the heritage
algorithm MSPPS with the same reference data set. The biases
are relatively similar, but the rms error was decreased by MiRS
from 4 to 3.4 cm, and the correlation was increased from 35%
to 52%. It is important to note that the verification of the
emissivity-based products from MiRS (such as the SWE or the
SIC) also constitutes an indirect validation of the emissivity
product itself.

The MiRS SIC retrieval is based on the inverted emissivity
spectrum. The postprocessing uses the absolute amplitude of
the spectrum and/or the relative spectral slopes between the
channels (i.e., the shape of the spectrum). Using the spectral
shape was found to be more robust in some instances than using
solely the magnitude of the emissivity spectrum. We should
note that the postprocessing step that interprets the emissivity
spectrum into SIC (and snow properties) also uses the surface
temperature from MiRS to help exclude the presence of frozen
water, therefore reducing the rate of false alarms.

The SIC product from MiRS was compared to a multitude
of reference data, including the official NASA-T2 and NASA-
Bootstrap algorithms, showing that MiRS generally captures
the same extent of sea ice coverage. This was shown in the
previous section. Another consistency check was performed
to qualitatively assess the validity of the SIC from MiRS. In
this test, a region in the Antarctic was selected because it is
known as being fully covered with sea ice all year long (latitude
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Fig. 23. Comparisons between the ground-based snow measurements and the retrievals of the new MiRS emissivity-based SWE algorithm (bottom panel). The
same comparison, but using the heritage algorithm MSPPS (brightness temperature based), is also shown (top). The results show improved statistics with the new
technique.

Fig. 24. Time series of SIC in 2006 from MiRS and MSPPS. Data correspond
to a region in the Antarctic known as being fully covered with sea ice all-
year long. Black lines correspond to MSPPS SIC, and red and orange lines
correspond to MiRS (using the spectral slope (more robust) or not, respec-
tively). Solid lines refer to absolute SIC, while dashed lines refer to the standard
deviations.

84–86 N and longitude 135–137 W). Data taken in 2006
(January to December) were gathered to assess the time series.
SIC from MiRS, using the magnitude of the spectrum and the
more robust approach based on the spectral shape, and data
from the heritage algorithm MSPPS were plotted (see Fig. 24).
Ideally, the SIC all-year long should be close to full coverage
(100%). Both the SIC absolute value (in solid lines) and the
standard deviation (in dashed lines) are plotted. MiRS retrieved
a SIC that is remarkably close to 100%, with a low standard
deviation. All algorithms tend to have some uncertainty during
the melting season (summer) where the signal could be mis-
interpreted. The fact that the emissivity spectral shape is used
makes it less likely to miss the ice signal, given that the ice spec-
trum (when all channels are used), even if mixed with a melted
top layer, is easily distinguishable from the ocean spectrum.
Algorithms based on the absolute magnitude of the brightness
temperatures (or the emissivities) or algorithms that use just one
or two channels (with less knowledge about the full spectral
shape) are more likely to have difficulties in these conditions.

3) Clouds and Hydrometeor Parameters: These parameters
include the CLW, IWP, RWP, and surface RR. These hydrom-
eteor parameters are notoriously difficult to assess because of
the multitude of unknowns mentioned already in Section III-F.
They are also difficult to assess because of the inexistence of an
effective way to measure these quantities (from either ground-
based or airborne sensors). The easiest to assess among these
hydrometeor parameters is the surface RR, which could be
compared to both ground-based meteorological radars as well
as to other algorithms (and other sensors) and surface-based
rain gauges. We will therefore concentrate this section on the
RR assessment. It is important to note that the postprocessing
stage (in MiRS) that leads to RR uses IWP, CLW, and IWP,
among others, as inputs, and therefore, assessing RR is an
indirect assessment of these inputs, which are, as expressed
already, hard to assess individually given the lack of reference
data. The rain rate from MiRS was assessed internally using
Tropical Rainfall Measuring Mission (TRMM) and CLOUD-
SAT retrievals, ground-based gauges, and radars. It was also
assessed independently through the International Precipitation
Working Group (IPWG) program, where MiRS retrievals are
compared against reference data (radars and gauges) along
with other algorithms (infrared and microwave or combination
thereof) using the exact same methodology. In this paper, we
will present short summaries of those two assessments.

Fig. 25 shows one aspect of the assessment of MiRS rainfall
performed at NOAA, using the CPC rain gauges analyses as a
reference. MiRS-based retrievals of RR from different sensors
(NOAA-18, Metop-A, and DMSP-F16 SSMI/S) are assessed
individually, as well as the composite precipitation that uses RR
samples from three sensors combined. This comparison with
CPC is limited to the CONUS. The bias is centered around
zero with a margin of ±2 mm/h. The correlation is higher
when all sensors are combined together and is centered around
60%. This correlation and other metrics were found to be
comparable to those of other more established algorithms, such
as the TRMM-based GPROF algorithm which is also assessed
within the IPWG [8]. This higher correlation of the sensor
composite (as opposed to the individual sensors) is due to the
higher temporal and spatial coverage obtained with combining
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Fig. 25. Time series of the MiRS RR performances [(a) bias and (b) spatial
correlation] assessed against the CPC rain analyses. MiRS RRs from different
individual sensors, as well as from the composite of all sensors, are shown.

all sensors. For the same reason, we notice that the correlation
of the individual sensor DMSP-F16 SSMI/S is lower than that
of the other sensors (NOAA-18 and Metop-A). Indeed, DMSP-
F16 SSMI/S has a narrower swath than those of NOAA-18
and Metop-A, which makes its spatial coverage less optimal,
leading to a lower degree of correlation. Intuitively, we do
expect that, if the temporal and spatial coverage of a sensor
is lower, then the likelihood of missing rain events is higher,
which would lead to degraded performances when comparing
daily rain estimates. This does not mean that MiRS applied
to DMSP-F16 SSMI/S leads to lower quality RRs per se (the
retrieval algorithm is the same applied to all sensors). In fact,
when computing the same metrics (correlations, biases, etc.) on
a set of temporally and spatially collocated profiles (between
rain gauges and MiRS retrievals), in which the spatiotemporal
coverage is no longer relevant, the same types of performances
were found for all sensors.

Fig. 26 shows a summary of the independent assessments of
the MiRS RR made within the IPWG. Note that three IPWG
sites are currently including MiRS into their intercomparison
efforts: the North American, the South American, and the
Australian sites.

The assessment is done using rain gauge analyses from
CPC and ground-based radars when available. A number of
statistical performances are computed, including the spatial
correlation, the absolute bias, the rms error, the probability of
detection, the false alarm rate, etc. In Fig. 26, we could see that
MiRS generally captures the rain events pretty well and that
the statistics obtained are comparable to those more established
algorithms with similar temporal and spatial coverage.

V. CONCLUSION

A 1DVAR retrieval algorithm has been developed to re-
trieve a comprehensive suite of geophysical parameters from
spaceborne microwave measurements. The suite of parameters
consists of those parameters that most directly impact the
measurements: atmospheric profiles of temperature, moisture,
liquid and ice cloud, liquid precipitation, and surface emissivity
spectrum and its skin temperature. In addition, the suite of
parameters includes a set of derived products. Some of which
are a simple vertical integration of the fundamental profiles,
and some others are based on a more elaborate postprocessing.
These include surface parameters such as snow cover, SWE,
snow effective grain size, SIC, sea ice type/age, and atmo-
spheric parameters such as TPW, CLW, RWP, IWP, and RR.
The design of the MiRS algorithm is generic, and it could ac-
commodate any microwave sensor that could be handled by the
forward operator CRTM. It is currently operational for NOAA-
18, NOAA-19, Metop-A, and DMSP-F16 SSMI/S and is being
prepared to run operationally for NPP/ATMS. At the time of
writing this paper, MiRS is also being extended to F18 SSMI/S
which was launched in late 2009. It also runs experimentally
for AMSR-E (imager only) on a daily basis. A large effort has
been put into the assessment of all of the products generated
by MiRS. This paper has presented a general overview of the
algorithm approach and a snapshot of the assessment results.
Its goal was to make potential users aware of the availability of
these operational products. It is thought that having the same al-
gorithm applied to all microwave sensors will bring consistency
between retrievals with an obvious advantage for climate appli-
cations. It also reduces significantly the amount of time needed
to develop an algorithm for a new sensor. It is noteworthy that,
in MiRS, the same code is used for all sensors, as well as the
same atmospheric covariance, background, and forward model.
Therefore, applying MiRS to a new sensor comes with a high
degree of confidence stemming from the previous tuning, im-
provement, and assessment performed for the previous sensors.
Other individual studies have been (or will be) published that
address in more detail the validity of individual parameters.

Besides the availability of MiRS products on a real-time
basis, the software package itself is also available, and it could
be requested, subject to a free-of-charge licensing agreement.

One suggested application of the MiRS package is as a pre-
processor for NWP variational data assimilation (3DVAR or
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Fig. 26. Snapshot of the independent assessment of MiRS RR performed in the framework of the IPWG. Photograph is courtesy of J. Janowiak from the
University of Maryland.

4DVAR). This could serve as a quality-control filter and/or as a
tool to provide first estimates of the solution. An additional, per-
haps more interesting, application is the adoption of the meth-
odology used in MiRS in handling the surface-sensitive channels
and in assimilating cloud/hydrometeors-impacted radiances.

All figures of this paper were taken from the official MiRS
Web site which may be accessed for more details about the
project, the assessment, and the monitoring of MiRS products
(http://mirs.nesdis.noaa.gov).

ACKNOWLEDGMENT

The authors would like to thank the JCSDA CRTM team
for providing an early version of the radiative transfer model
CRTM, T. Zhu from NOAA/NESDIS for providing MM5 runs
for building a covariance matrix for hydrometeors, J. Janowiak

and D. Vila from the University of Maryland, and B. Ebert
from the Australian Bureau of Meteorology Research Centre
for processing MiRS RRs within the IPWG and for providing
an independent validation of MiRS precipitation. The views
expressed here are those of the authors solely and do not
constitute a statement of policy, decision, or position on behalf
of NOAA or the U.S. Government.

REFERENCES

[1] W. Bell, S. English, B. Candy, N. Atkinson, F. Hilton, S. Swadley,
W. Campbell, N. Bormann, G. Kelly, K. Masahiro, and N. Baker, “The
assimilation of SSMIS radiances in numerical weather prediction mod-
els,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 884–900,
Apr. 2008.

[2] S.-A. Boukabara, F. Weng, and Q. Liu, “Passive microwave remote sens-
ing of extreme weather events using NOAA-18, AMSUA and MHS,”
IEEE Trans. Geosci. Remote Sens., vol. 45, no. 7, pp. 2228–2246,
Jul. 2007.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

22 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[3] S.-A. Boukabara and F. Weng, “Microwave emissivity over ocean
in all-weather conditions, validation using WindSAT and airborne
GPS-dropsondes,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2,
pp. 376–384, Feb. 2008.

[4] S.-A. Boukabara, K. Garrett, W. Chen, Q. Liu, B. Yan, and F. Weng,
“Global coverage of total precipitable water using a microwave variational
algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3608–
3621, Oct. 2010.

[5] F. Chevallier, “Sampled databases of 60-level atmospheric profiles from
the ECMWF analyses,” Eur. Centre Medium-Range Weather Forecasts,
Reading, U.K., Document No. NWPSAF-EC-TR-004, v. 1.0, 2002.

[6] B. A. Colle, J. B. Olson, and J. S. Tongue, “Multiseason verification of the
MM 5. Part II: Evaluation of high-resolution precipitation forecasts over
the Northeastern United States,” Wea. Forecast., vol. 18, no. 3, pp. 458–
480, 2003.

[7] G. Deblonde and S. English, “One-dimensional variational retrievals from
SSMI/S-simulated observations,” J. Appl. Meteorol., vol. 42, no. 10,
pp. 1406–1420, Oct. 2003.

[8] E. E. Ebert, J. E. Janowiak, and C. Kidd, “Comparison of near-real-time
precipitation estimates from satellite observations and numerical models,”
Bull. Amer. Meteorol. Soc., vol. 88, no. 1, pp. 47–64, Jan. 2007.

[9] R. R. Ferraro, F. Weng, N. C. Grody, L. Zhao, H. Meng, C. Kongoli,
P. Pellegrino, S. Qiu, and C. Dean, “NOAA operational hydrological
products derived from the Advanced Microwave Sounding Unit,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 1036–1049, May 2005.

[10] G. A. Grell, J. J. Dudhia, and D. R. Stauffer, “A description of the fifth-
generation Penn State/NCAR Mesoscale Model (MM5),” Nat. Center
Atmos. Res., Boulder, CO, NCAR Tech. Note NCAR/TN-398, Jun. 1995.

[11] S. R. Helfrich, D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta,
“Enhancements to, and forthcoming developments in the Interactive Mul-
tisensor Snow and Ice Mapping System (IMS),” Hydrol. Process., vol. 21,
no. 12, pp. 1576–1586, Jun. 2007.

[12] Integrated Forecast System Documentation Part II: Data Assimilation,
Eur. Centre Medium Range Weather Forecasts, Reading, 2007.

[13] F. Iturbide-Sanchez, S.-A. Boukabara, R. Chen, K. Garrett, C. Grassotti,
W. Chen, and F. Weng, “Assessment of a variational inversion system for
rainfall rate over land and water surfaces,” IEEE Trans. Geosci. Remote
Sens., Jan. 2011. DOI: 10.1109/TGRS.2011.2119375, to be published.

[14] F. Karbou, C. Prigent, L. Eymard, and J. Pardo, “Microwave land emis-
sivity calculations using AMSU measurements,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 5, pp. 948–959, May 2005.

[15] R. E. J. Kelly, A. T. C. Chang, J. L. Foster, and M. Tedesco, AMSR-E/Aqua
Daily L3 Global Snow Water Equivalent EASE-Grids. Boulder, CO:
Nat. Snow Ice Data Center, Digital Media, 2004, updated daily.

[16] C. Kongoli, S.-A. Boukabara, B. Yan, F. Weng, and R. Ferraro, “A new
sea-ice concentration algorithm based on microwave surface emissivi-
ties,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 175–189,
Jan. 2011.

[17] D. B. Kunkee, G. A. Poe, D. J. Boucher, S. Swadley, Y. Hong, J. Wessel,
and E. Uliana, “Design and evaluation of the first Special Sensor Mi-
crowave Imager/Sounder (SSMIS),” IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 4, pp. 863–883, Apr. 2008.

[18] Q. Liu and F. Weng, “Advanced doubling-adding method for radia-
tive transfer in planetary atmospheres,” J. Atmos. Sci., vol. 63, no. 12,
pp. 3459–3465, Dec. 2006.

[19] A. C. Lorenc, “Development of an operational variational assimilation
scheme,” J. Meteorol. Soc. Jpn.—Special Issue “Data Assimilation in
Meteorology and Oceanography: Theory and Practice”, vol. 75, no. 1B,
pp. 339–346, 1995.

[20] T. Markus and D. J. Cavalieri, “An enhancement of the NASA Team
sea ice algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3,
pp. 1387–1398, May 2000.

[21] L. M. McMillin, L. J. Crone, and T. J. Kleespies, “Atmospheric transmit-
tance of an absorbing gas. 5. Improvements to the OPTRAN approach,”
Appl. Opt., vol. 34, no. 36, pp. 8396–8399, Dec. 1995.

[22] T. Mo, “Calibration of the Advanced Microwave Sounding Unit-A ra-
diometers for NOAA-N and NOAA-N′,” U.S. Dept. Commerce, Nat.
Ocean. Atmos. Admin., Nat. Environ. Satellite, Data, Inf. Service, Silver
Spring, MD, Tech. Rep. NOAA NESDIS 106, 2002.

[23] J.-L. Moncet, S. A. Boukabara, A. Lipton, J. Galantowicz, H. Rieu-Isaacs,
J. Hegarty, X. Liu, R. Lynch, and N. Snell, Algorithm Theoretical Basis
Document (ATBD) for the Conical-Scanning Microwave Imager/Sounder
(CMIS) Environmental Data Records, vol. 2, Core Physical Inversion
Module. Lexington, MA: AER Inc., Mar. 2001, ver. 1.4.

[24] C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land sur-
face emissivities estimated from SSM/I observations,” J. Geophys. Res.,
vol. 102, no. D18, pp. 21 867–21 890, 1997.

[25] W. L. Smith and H. M. Woolf, “The use of eigenvectors of statistical co-
variance matrices for interpreting satellite sounding radiometer observa-
tions,” J. Atmos. Sci., vol. 33, no. 7, pp. 1127–1140, Jul. 1976.

[26] F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,”
J. Geophys. Res., vol. 106, no. D17, pp. 20 115–20 123, 2001.

[27] F. Weng, Y. Han, P. Van Delst, Q. Liu, T. Kleespies, B. Yan, and J. Le
Marshall, “JCSDA Community Radiative Transfer Model (CRTM),” in
Proc. 14th TOVS Conf., Beijing, China, 2005.

[28] B. Yan and F. Weng, “Assessments of F16 Special Sensor Microwave
Imager and sounder antenna temperatures at lower atmospheric sounding
channels,” Adv. Meteorol., vol. 2009, pp. 1–18, 2009, Article ID 420985.

Sid-Ahmed Boukabara received the Engineer de-
gree in signal processing from the National School
of Aeronautics (ENAC), Toulouse, France, in 1994,
the M.S. degree in signal processing from the Institut
National Polytechnique de Toulouse, Toulouse, in
1994, and the Ph.D. degree in remote sensing from
the Denis Diderot University, Paris, France, in 1997.

He was involved in the calibration/validation of
the European Space Agency’s ERS-2 microwave
radiometer, and he has worked on the synergistic
use of active and passive microwave measurements.

He joined AER Inc., Cambridge, MA, in 1998 and worked on the design,
implementation, and validation of the National Polar-orbiting Operational
Environmental Satellite System (NPOESS)/Conical-Scanning Microwave Im-
ager/Sounder physical retrieval algorithm on the NASA SeaWinds/QuikSCAT
wind vector rain flag and on the development of the atmospheric absorption
model MonoRTM, dedicated to the microwave and laser applications. In 2005,
he joined the National Oceanic and Atmospheric Administration/National
Environmental Satellite, Data, and Information Service, Camp Springs, MD,
and since then, he has been leading an effort to develop the capability of
assimilating passive microwave measurements in all-weather conditions using
a combination of variational technique algorithm and the Community Radiative
Transfer Model. In 2009, he was nominated as the Deputy Director of the
Joint Center for Satellite Data Assimilation. His principal areas of interest
include radiative transfer modeling, including absorption and scattering of the
surface and the atmosphere; spectroscopy; algorithm development using neural
networks; assimilation-type techniques; and statistical approaches.

Kevin Garrett received the M.S. degree in at-
mospheric sciences from Texas A&M University,
College Station, in 2007.

He joined the I.M. Systems Group, Inc., Na-
tional Oceanic and Atmospheric Administration
(NOAA)/National Environmental Satellite, Data,
and Information Service, Camp Springs, MD, as a
Support Scientist. His primary effort is focused on
the development of passive microwave remote sens-
ing retrieval algorithms, and he is currently leading
the effort of integrating NOAA’s Microwave Inte-

grated Retrieval System within the NPOESS Data Exploitation operational
environment.

Wanchun Chen received the M.S. degree in meteorology from the University
of Maryland, College Park, in 2000 and the M.S. degree in computer sciences
from Johns Hopkins University, Baltimore, MD, in 2005.

He is with Dell, Inc., in support of the Microwave Integrated Remote
Systems as a System Developer and as a Web Developer with the Center for
Satellite Applications and Research, National Environmental Satellite, Data,
and Information Service, National Oceanic and Atmospheric Administration,
Camp Springs, MD.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOUKABARA et al.: MiRS: AN ALL-WEATHER 1DVAR SATELLITE DATA ASSIMILATION AND RETRIEVAL SYSTEM 23

Flavio Iturbide-Sanchez (S’03–M’07) received the
B.S.E.E. degree in electronics engineering from the
Autonomous Metropolitan University, Mexico City,
Mexico, in 1999, the M.S.E.E. degree in electri-
cal engineering from the Advanced Studies and
Research Center, National Polytechnic Institute,
Mexico City, in 2001, and the Ph.D. degree from
the University of Massachusetts, Amherst, in 2007,
where he was advised by Prof. S. C. Reising and
supported by the National Science Foundation.

His Ph.D. research focused on the miniaturization,
development, calibration, and performance assessment of low-cost and power-
efficient microwave radiometers for remote sensing applications. From 2001
to 2005, he was a Research Assistant with the Microwave Remote Sensing
Laboratory, University of Massachusetts, where he performed research on
the design, development, and characterization of highly integrated multichip
modules and microwave circuits for low-noise, low-power consumption, high-
gain, and high-stability microwave radiometers. From 2005 to 2007, he was
with the Microwave Systems Laboratory, Colorado State University, Fort
Collins, focusing on the design, testing, deployment, and data analysis of the
low-cost and power-efficient Compact Microwave Radiometer for Humidity
Profiling. Since 2008, he has been with the I.M. Systems Group, Inc., National
Oceanic and Atmospheric Administration/National Environmental Satellite,
Data, and Information Service/Center for Satellite Applications and Research,
Camp Springs, MD. His research interests include communication systems;
microwave radiometry; microwave/millimeter-wave IC design and packaging;
RF integrated circuits; system-on-a-chip; active antennas; modeling, anal-
ysis, design, and measurement of microwave and millimeter-wave circuits
and systems; and atmospheric remote sensing, including retrieval algorithm
development.

Dr. Iturbide-Sanchez received the First-Place Poster Award at the 11th Spe-
cialist Meeting on Microwave Radiometry and Remote Sensing Applications
(MicroRad 2010) in Washington, DC. While he was a Ph.D. student, he was
a finalist in two IEEE Student Paper Competitions: one at the International
Geoscience and Remote Sensing Symposium in Anchorage, AK, in September
2004 and one at the International Microwave Symposium in San Francisco, CA,
in June 2006. He was also awarded the Mexican National Council for Science
and Technology (CONACYT) Graduate Fellowship from 1999 to 2004.

Christopher Grassotti received the B.S. degree in earth and space science
from the State University of New York, Stony Brook, the M.S. degree in
atmospheric science from the University of Wisconsin, Madison, and the
M.S. degree in viticulture and enology from the Ecole Nationale Superieure
Agronomique (now SupAgro), Montpellier, France.

He has previously worked for Atmospheric and Environmental Research,
Inc., Lexington, MA, and Environment Canada, Montreal, QC, Canada. He
is currently with the I.M. Systems Group, Inc., Camp Springs, MD, as a
Contractor for the National Oceanic and Atmospheric Administration/National
Environmental Satellite, Data, and Information Service/Center for Satellite
Applications and Research, focusing on the development and improvements
in the Microwave Integrated Retrieval System.

Cezar Kongoli received the M.Sc. degree in soil
and water from Wageningen University, Wagenin-
gen, The Netherlands, in 1994 and the Ph.D. degree
in environmental biophysics from the University of
Wisconsin, Madison, in 2000.

Since 2000, he has been with the National Oceanic
and Atmospheric Administration/National Environ-
mental Satellite, Data, and Information Service,
Camp Springs, MD, working on the development of
satellite remote sensing algorithms, with an emphasis
on snow and ice. His work has included the devel-

opment of the Advanced Microwave Sounding Unit (AMSU) based falling
snow and snow cover algorithms and, more recently, the development of
advanced snow cover and sea ice algorithms from variationally retrieved surface
emissivities using AMSU/MHS and SSMI/S observations. He is currently an
Assistant Research Scientist with the Earth System Science Interdisciplinary
Center, University of Maryland, College Park.

Ruiyue Chen received the B.S. and M.S. degrees in
electrical engineering from the Nanjing University
of Aeronautics and Astronautics, Nanjing, China,
in 1997 and 2000, respectively, the M.S. degree in
atmospheric sciences from Texas A&M University,
College Station, in 2003, and the Ph.D. degree in at-
mospheric sciences from the University of Maryland,
College Park, in 2010.

In 2007, he joined the I.M. Systems Group, Inc.,
Rockville, MD, in support of satellite remote sens-
ing and sensor calibration for the National Oceanic

and Atmospheric Administration/National Environmental Satellite, Data, and
Information Service. His principal areas of interest include microwave remote
sensing and satellite sensor calibration.

Quanhua Liu received the B.S. degree from the
Nanjing Institute of Meteorology, Nanjing, China, in
1981, the M.S. degree in physics from the Chinese
Academy of Sciences, Beijing, China, in 1984, and
the Ph.D. degree in marine science from the Univer-
sity of Kiel, Kiel, Germany, in 1991.

He is with the Joint Center for Satellite Data As-
similation, Camp Springs, MD. His primary interests
are radiative transfer theory, retrieval methodology,
solar and wind energy assessment, and prediction
and applications of satellite data.

Banghua Yan received the Ph.D. degree in atmo-
spheric physics from the Institute of Atmospheric
Physics, Chinese Academy of Sciences, Beijing,
China, in 1997 and the Ph.D. degree in atmospheric
and ocean remote sensing from the University of
Alaska, Fairbanks, in 2001.

Since November 1999, she has been with the
National Oceanic and Atmospheric Administration
(NOAA)/National Environmental Satellite, Data,
and Information Service/Center for Satellite Appli-
cations and Research, Camp Springs, MD. She was

an Associate Research Scientist with the Earth System Science Interdisciplinary
Center, University of Maryland, College Park, and the Joint Center for Satellite
Data Assimilation (JCSDA), NOAA, Camp Springs. She is currently with the
Office of Satellite Data Processing and Distribution, NOAA, as an Oceanog-
rapher. In the past few years, she directly contributed in the developments of
microwave land, snow, and sea ice emissivity models which have significantly
improved uses of satellite sounding data in numerical weather prediction
(NWP) models and have impacted the high-latitude weather forecasts. These
land, snow, and sea ice microwave emissivity models have been implemented
into the NOAA NCEP NWP model and the JCSDA Community Radiative
Transfer Model that has been successfully used in several operational data
assimilation systems in the U.S. The major fields she is working on include
the following: 1) land and snow microwave emissivity modeling and retrievals;
2) assimilation impacts of microwave satellite measurements on global NWP
models; and 3) remote sensing of ocean color. She has published over 15 papers
in international peer-reviewed journals in the past several years.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

24 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fuzhong Weng received the Ph.D. degree from the
Department of Atmospheric Science, Colorado State
University, Fort Collins, in 1992.

He is the Chief of the Satellite Calibration and
Data Assimilation Branch, National Oceanic and
Atmospheric Administration (NOAA)/National En-
vironmental Satellite, Data, and Information Service/
Center for Satellite Applications and Research,
Camp Springs, MD. In the past years, he has been
leading the developments of NOAA operational
satellite microwave products and algorithms from the

Special Sensor Microwave Imager and Advanced Microwave Sounding Unit.
He is the Sensor Science Chair of the NPP/JPSS program. He is a Science
Lead in developing the Community Radiative Transfer Model that has been
successfully used in several operational data assimilation systems in the U.S.
He also directly contributed in the developments of microwave land, snow,
and sea ice emissivity models which have significantly improved uses of
satellite sounding data in numerical weather prediction (NWP) models and have
impacted the high-latitude weather forecasts. He is currently developing new
innovative techniques to advance uses of satellite measurements under cloudy
and precipitation areas in NWP models.

Dr. Weng was the first winner of the 2000 NOAA David Johnson Award for
his outstanding contributions to satellite microwave remote sensing fields and
the utilization of satellite data in the NWP models. He also received the 2002
SPIE Scientific Achievement Award for Excellence in Developing Operational
Satellite Microwave Products and Algorithms. He was awarded in 2004 by the
U.S. Department of Commerce with a bronze medal for his developments of
operational microwave products to improve weather and climate predictions.
He was the winner of the Department of Commerce Gold Medal Award in
2005 for his achievement in satellite data assimilation, and he also received the
NOAA bronze medal for leading successful NOAA-18 instrument calibration.

Ralph Ferraro received the B.S. degree in mete-
orology from Rutgers University, Camden, NJ, in
1980 and the M.S. degree in meteorology from the
University of Maryland, College Park, in 1982.

He is the Chief of the Satellite Climate Studies
Branch, National Oceanic and Atmospheric Admin-
istration (NOAA)/National Environmental Satellite,
Data, and Information Service, College Park, MD.
His research focuses on the use of environmental
satellite remote sensing for both weather and climate
studies, with an emphasis on precipitation and other

hydrological cycle products. He is a member of NASA’s Precipitation Mea-
surement Missions and AMSR-E science teams and the Cochair of the NOAA’s
Steering Group on Precipitation Measurement from Space. He is the former
Cochair of the International Precipitation Working Group.

Thomas J. Kleespies received the B.S. degree
in atmospheric sciences from the University of
Washington, Seattle, in 1974, the M.S. degree in
atmospheric from Colorado State University, Fort
Collins, in 1977, and the Ph.D. degree in meteorol-
ogy from The University of Utah, Salt Lake City,
in 1994.

He was employed by the Naval Environmental
Prediction Research Facility as a Research Meteo-
rologist from 1978 to 1984. He was employed by
the Air Force Geophysics Laboratory as a Research

Meteorologist from 1984 to 1993. Since 1993, he has been a Physical Scientist
with the National Oceanographic and Atmospheric Administration/National
Environmental Satellite, Data, and Information Service, Camp Springs, MD.
At the end of December 2010, he retired after more than 33 years of federal
service.

Dr. Kleespies is a member of the American Meteorological Society, the
American Association for the Advancement of Science, the American Geo-
physical Union, and the Optical Society of America. He has received several
Department of Commerce medals for superior and meritorious service.

Huan Meng received the M.S. degree in physical oceanography from Florida
State University, Tallahassee, in 1993 and the Ph.D. degree in hydrology from
Colorado State University, Fort Collins, in 2004.

She is currently a Physical Scientist with the National Oceanic and Atmo-
spheric Administration (NOAA)’s National Environmental Satellite, Data, and
Information Service (NESDIS), College Park, MD. Her main areas of interest
are in developing snowfall rate retrieval algorithm and climate data record, both
using measurements from satellite-based passive microwave radiometers. Prior
to the current position, she was with QSS Group, Inc., and supported NESDIS
from 1999 to 2006.


